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(ABSTRACT)

A new upwind scheme is developed for solving the three-dimensional Euler
equations on unstructured tetrahedral meshes. The method yields solution accuracy
and efficiency comparable to that currently available from similar structured-grid
codes. The key to achieving this result is a novel cell reconstruction process which
is based on an analytical formulation for computing solution gradients within tetra-
hedral cells. Prior methodology requires the application of cumbersome numerical
procedures to evaluate surface integrals around the cell volume. The result is that
higher-order differences can now be constructed more efficiently to attain computa-
tional times per cell comparable to those of structured codes.

The underlying philosophy employed in constructing the basic flow solver is
to draw on proven structured-grid technology whenever possible in order to reduce
risk. Thus, spatial discretization is accomplished by a cell-centered finite-volume
formulation using flux-difference splitting. Solutions are advanced in time by a 3-
stage Runge-Kutta time-stepping scheme with convergence accelerated to steady
state by local time stepping and implicit residual smoothing. The flow solver oper-
ates at a speed of 34 microseconds per cell per cycle on a CRAY-2S supercomputer
and requires 64 words of memory per cell.

Transonic solutions are presented for a broad class of configurations to demon-

strate the accuracy, speed, and robustness of the new scheme. Solutions are shown



for the ONERA M6 wing, the Boeing 747-200 configuration, a low-wing trans-
port configuration, a high-speed civil transport configuration, and the space shuttle
ascent configuration. Computed surface pressure-coefficient distributions on the
ONERA M6 wing are compared with structured-grid results as well as experimen-
tal data to quantify the accuracy. A further assessment of grid sensitivity and the
effect of convergence acceleration parameters is also included for this configuration.
The more complex configurations serve to demonstrate the robustness and efficiency
of the new method and its potential for performing routine aerodynamic analysis
of full aircraft configurations. For example, the basic transonic flow features are
well captured on the space shuttle ascent configuration with only 7 megawords of

memory and 142 minutes of CRAY-YMP run time.
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1. INTRODUCTION

The role of Computational Fluid Dynamics (CFD) in maintaining the com-
petitiveness of the U.S. aircraft industry in the international marketplace was a
recurring theme at the 1991 NASA CFD Conference [1]. Panel discussions held be-
tween industry, university, and government researchers and managers drew a clear
consensus that advanced CFD codes were now considered principle technology in
the analysis and design of air vehicles. From the discussions came a further con-
sensus that more advanced CFD tools were needed by industry which would enable
the working-level engineer to provide final answers to a problem within days. The
industry personnel expressed a desire that more effort be directed by government
and university research organizations toward bridging the gap between research on
basic algorithms and the development of application software.

The primary need reiterated during the discussions was for user-friendly soft-
ware capable of providing timely analysis and design of complex aircraft configu-
rations across the speed range from subsonic to supersonic. Computational tools
have been maturing rapidly toward this goal over the past decade. The earliest
computations on geometrically complex aircraft geometries were performed with
either one of two approaches. The first, and simplest, utilized an extended small
disturbance-type equation coupled with mean-surface boundary conditions [2-4].
The second, and more sophisticated approach employed the full potential equation
coupled with surface-conforming boundary conditions [5-7]. Due to the simplicity
of the boundary conditions, the small disturbance method could be more readily
applied to aircraft configurations with nacelles, pylons, winglets, and canards [8].
However, the assumptions of isentropic and irrotational flow employed in both meth-
ods were not strictly correct when shock waves are present, and thus, limited their
accuracy.

As more powerful supercomputers became available, interest increased in de-

veloping efficient and accurate algorithms for solving the Euler and Navier-Stokes
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equations. The Euler equations provide a more refined model of the inviscid flow by
allowing entropy rises through shock waves while conserving mass, momentum, and
energy, and by admitting vorticity. The Navier-Stokes equations include the addi-
tional terms for the viscous shear stresses. Early applications of the Euler equations
to complex geometries were made using single-block grids [9, 10]. These efforts were
continued and extended to viscous flow over complex geometries [11].

As Euler and Navier-Stokes algorithms matured, efforts were also underway
to extract more geometrical flexibility from the computational grid. Domain de-
composition became a preferred approach for solving the flexibility problem. This
approach involves dividing the spatial domain around a complex geometry into
zones of simpler grid blocks, then solving the flow equations independently within
each block while maintaining communication across the block boundaries. The key
obstacle to overcome was to provide an efficient and accurate transfer of informa-
tion across zonal boundaries. Efficient schemes have been developed for patching
dissimilar interfaces along a common boundary in a conservative manner [12 to 16],
and for overlapping the boundaries of independent component grids [17,18]. Grid
embedding techniques were also under investigation as a means of increasing local
resolution of flow features. [19 to 21]. Domain decomposition methodologies have
been successfully applied for the computation of the viscous flow around complex
configurations such as the F-16 [22], STS ascent configuration [23], and the F/A-
18 [24], F/A-18 forebody [25,26], and a high-speed accelerator configuration [27].
However, even with the recent dramatic progress in applying the various domain
decomposition techniques to complex configurations, the grid setup time is still
measured in months. Thus, more advances are necessary before such large-scale
computations are performed routinely.

New opportunities for the analysis and design of complex configurations are
emerging through the relatively new technology of unstructured grids [28-44]. Tetra-

hedral cells offer exceptional geometric flexibility in constructing quality grids around
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complex configurations without resorting to the large scale decomposition tech-
niques. Furthermore, the time required to generate an unstructured tetrahedral
grid is significantly less than that for a structured zonal grid. Unstructured flow
solvers utilize a random data structure which better facilitates the adaptation of
the grid to the physics of the flow, or the movement of components within the grid,
since grid points can be placed where ever needed.

While unstructured methodology is rooted in the Finite Element Method (FEM)
from the discipline of Structural Analysis [45], a variety of algorithms have been de-
veloped for solving the compressible flow equations. Adaptations of the FEM have
been successfully applied to the flow equations by some researchers [30 to 37]. Oth-
ers have employed more conventional central-differenced finite-volume techniques
with success [28,29]. More recently, upwind-differenced finite-volume methods have
been investigated for unstructured grids [38 to 44]. While many of these meth-
ods have shown varying degrees of success, most fall well short of their structured
counterparts in terms of efficiency and accuracy. Thus, significant advancements
are needed before this methodology will be used widely for solving practical three-
dimensional problems.

There is a need for more fundamental research in both unstructured solution
algorithms and grid generation methodology. Current solution algorithms are much
less efficient than structured ones due to the indirect addressing required by ran-
dom data sets. Furthermore, many of the unstructured algorithms have not demon-
strated sufficient accuracy for addressing realistic problems, in particular for viscous
flow. The efficient implementation of viscous terms and turbulence models on ar-
bitrary tetrahedral cells has yet to be resolved satisfactorily, although efforts are
underway to address this problem [34,36]. The generation of tetrahedral grids is
a research topic in itself. The most common approaches are the Advancing Front
technique [46] and Delaunay Triangulation [47,48]. Methods for generating highly-
stretched viscous grids on complex three-dimensional geometries are in the very

early stages of development [49,50], but are pivotal to the overall advancement of
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unstructured grid methodology. Solution adaptive gridding techniques are presently
under investigation. While some have been applied in three-dimensions [30, 33, 35,
and 37], additional work is needed before realizing the full benefits on complex
configurations.

More applied research is needed in order to focus the development of unstruc-
tured methodology toward a useable tool in a timely fashion. Application of the
basic methodology to solving relevant problems tends to expose deficiencies at an
early stage and accelerate the implementation of other useful features such as design
algorithms or real-gas models. Documented code calibration studies are essential
for evaluating solution accuracy and establishing confidence within the user com-
munity. These studies should be conducted carefully for a broad class of geometries
for which experimental data is available.

The long-term goal for developing unstructured grid methodology is to produce
a useful engineering tool which ultimately can provide rapid analysis of full aircraft
configurations at flight Reynolds numbers. This goal is sufficiently broad to require
the concerted effort of many researchers in bringing it to fruition. The objective
of the present work is to construct an accurate and efficient unstructured three-
dimensional inviscid flow solver. The coding is constructed as a modular platform
on which to build new capabilities. The underlying development philosophy is to
draw on proven structured-grid technology whenever possible in order to reduce
risk. The resulting scheme is a cell-centered finite volume formulation which is ap-
plied to tetrahedral cells using flux-difference splitting and explicit time integration
with convergence acceleration. An accurate and efficient higher-order differencing
scheme for tetrahedral cells was not available in the literature and could not be
readily extended from structured methodology, thus, requiring the development of
substantially new technology. This development constitutes one of the major con-
tributions of the present work, and has been summarized in Refs. [43, 44]. In order
to minimize resource requirements, particular attention is given to both memory
management and vectorization. All grids are generated using an extended version
of the advancing front grid generator, VGRID3D [51]. Graphic postprocessing of
solutions was performed using VPLOT3D described in Ref. [51].
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2. GOVERNING EQUATIONS

2.1 Introduction

The fluid motion is to be governed by the time dependent Euler equations for
an ideal gas which are a coupled set of equations that express the conservation
of mass, momentum, and energy. The general assumptions employed are that the
fluid is compressible, inviscid, nonconducting, adiabatic, and is not influenced by
body forces. Since the equations of fluid motion are based upon conservation laws,
it is convenient to express them in a form which clearly displays the conserved
quantities. The governing equations will be expressed in conservative form using

both the integral and differential formulations.

2.2 Mathematical Description

2.2.1 Integral Form

The integral form of the governing equations can be derived from first principles
using a control-volume approach that is based on the satisfaction of macroscopic
physical laws. This approach is particularly useful when dealing with inviscid con-
tinuum flow in which discontinuities exist, e.g. shock waves or contact discontinu-
ities. The integral form of the flow equations are equivalent to the differential ones
in regions of smooth flow and are also valid across discontinuities where they reduce
to the Rankine-Hugoniot jump relations [52]. The integral form is especially useful
when dealing with finite-volume discretization techniques, as will be discussed in a
subsequent section.

The governing equations presented below express a relationship where the time
rate of change of the state vector Q within the domain  is balanced by the net

flux F across the boundary surface 92

/ / /Q%der/ /aQF(Q) RdA=0 2.1)
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where the conserved variables are

P density
pU z — momentum per unit volume
Q=4 pv p ={ y — momentum per unit volume
pw z — momentum per unit volume
peo total energy per unit volume
and the flux vector is
P 0
pu Ny
F(Q)-a=(V-8){ pv | +p{
pw Nz
pho 0

The terms in Eq. (2.1) are nondimensionalized as follows: noting that the super-
script * denotes a dimensional quantity and the subscript co represents freestream
conditions, then p = p*/p’, u = u*/al,, v = v*/ak, w = w*/a},, and
eo = ef/(a%)?. The parameters fiz, 7y, and 7, are the Cartesian components
of the ezterior surface unit normal fi on the boundary 0Q. The Cartesian velocity
components are u,v, and w in the z,y, and z directions, respectively. It is necessary
to define an equation of state in order to close the system of equations. Using the

ideal gas assumption, the pressure can be expressed as
1
p=ply = Dlee = 5@+ 07 +w?)] (2.2)

where v is the ratio of specific heats and is prescribed as 1.4 for air. The total

enthalpy is defined as

¥y p,1 , 2 2
ho = ——= 4 —(u® + v* + w*). 2.3
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2.2.2 Differential Form

It is often convenient to use the differential form of the governing equations
for discussion purposes. This form of the equations relies on aspects of continuum
mathematics in the derivation and is restricted by the assumptions that the domain
must have continuous partial derivatives and be bounded by a simple, piecewise
smooth surface. The differential form of the equations can be derived by applying
Gauss’s theorem to the flux integral in Eq. (2.1). It is in the application of Gauss’s
theorem that the restrictive continuum properties are introduced.

The resulting flow equations in a conservative, Cartesian, differential form are:

0Q of 0g Oh

— 4+ —+—=+7—=0 2.4
o oz oy ' o 24)
with
p
pu
Q=4 pv
pw
peo
and
pu pU pw
pu? +p puv puw
f={ puww j,g={p’+p ,h={ pow
puw pVw pw2 +p
puh, pvho pwho

As before, these equations are closed using the ideal gas assumption described in
Eq. (2.2). While Eqgs. (2.4) are shown in mathematical conservation form, the con-
tinuum assumption employed in their derivation precludes the conservative property

across discontinuities within the domain.
2.3 Finite-Volume Discretization

The finite-volume technique is a discretized application of the control-volume
approach that was used in the derivation of the integral form of the governing equa-
tions. The global domain is divided into a finite number of subdomains, each one

of arbitrary volume ; and closed by a boundary 9%;, where Eq. (2.1) is applied
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to each subdomain. Since each subdomain §2; shares common boundaries with
its neighbors, this approach retains the conservative property inherent to the inte-
gral equations. This feature occurs because the flux which exits across an interior
boundary of one subdomain will enter the neighboring subdomain across the com-
mon boundary. The end result is that the contributions from the fluxes across all
of the interior boundaries within the global domain will exactly cancel each other,
leaving only those flux contributions across the ezternal boundary.

Numerical approximations to the the volume and surface integrals of Eq. (2.1)
lead to the unknown states being interpreted as volume-averaged values in each

subdomain. The volume-averaged values for the conserved variables Q are

@) =7/ [ _aav. | (2.5)

By making the assumption of a fixed subdomain so that the time derivative may
be brought outside the integral in Eq. (2.1), and then substituting Eq. (2.5), a

semi-discrete approximation to the equations can be written

&(%)

0Q;
V,W + ;Fi’jAAi,j = 0. (2.6)
where
Qi =(Qi)

Equation (2.6) states that the time rate of change of the volume-averaged state Q
in the i** control volume is balanced by the summation of the area-averaged flux
F; ; through the discrete boundary faces k. Equation (2.6) can also be interpreted
as a discrete form of the differential equation if Q; is assumed to be the state at
the nodal point 3.

The subdomains ; can be represented by any arbitrarily shaped volume, i.e.
hexahedrals, tetrahedrals, polygons, etc. For structured methods, that volume is

usually prescribed as a hexahedral cell where the Cartesian coordinates can be
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transformed into a generalized three-component curvilinear frame of reference. The
summation in Eq. (2.6) is then applied over the six faces of the cell. Many efficient
algorithms which are based on a logical indexing of data structure are available [53-
65] for solving the resulting system of algebraic equations. The system of equations
can also be solved using generalized indexing schemes which are often referred to
in literature as unstructured techniques [66].

The present method employs a generalized indexing scheme with a cell-centered
control volume. The global domain is divided into tetrahedral cells where each cell
is viewed as a control volume ; that is enclosed by the four triangular surfaces

09, as shown in sketch (a)

B Grid point locations
® Q evaluated at cell centroid
X Fluxes evaluated at face centroids

Sketch (a)

Equation (2.6) is applied over the four faces of each cell. The equations for the
metric terms of tetrahedral cells are presented in Appendix Al.

The cell-centered approach contrasts with the more commonly used node-
centered approach [28, 30, 31, 33, 36, 37, 40] that utilizes polygonal control volumes

which are constructed around the vertices of the tetrahedra. The prirhary reason
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for choosing the cell-centered approach is due to the increased spatial resolution
afforded by the scheme on a set grid. The higher spatial resolution stems from the
feature that tetrahedral grids contain between five and six times more cells than
nodes. Similarly, the surface resolution is doubled since there are twice as many
boundary faces as boundary nodes. Secondary reasons for choosing the cell-centered
approach are that it is more straightforward to program and to treat the boundary

conditions accurately.
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3. UPWIND DISCRETIZATION

3.1 Introduction

The finite volume approach has the basic feature that the time integration
and spatial discretization procedures are fully decoupled. Thus, the spatial dis-
cretization is accomplished independent of the time integration. The problem to be
addressed in this section pertains to the estimation of fluxes across the faces of the
tetrahedral control volumes. Once these fluxes have been determined as a function
of the state variable Q, the solution can be advanced in time by any number of time
integration algorithms.

The interface fluxes are generally constructed in one of two manners: central
differencing or upwind differencing. For central differencing, the numerical flux
F(QL,QRr) is computed by averaging the fluxes corresponding to Qr and Qg.
This approach leads to a decoupling of adjacent cells and is inherently unstable. To
achieve stability, artificial dissipation must be added. On structured grids it has
been found that an effective and inexpensive dissipation formula can be constructed
as a blend of second and fourth differences in the flow variables [67]. This has been
extended to unstructured tetrahedral grids by constructing the dissipative operator
as a blend of a Laplacian and a biharmonic operator [68], corresponding to the
second and fourth differences respectively, and using the finite volume or integral
approximation to evaluate these operators.

Upwind schemes determine the interface fluxes based on the characteristic the-
ory for hyperbolic systems of equations. Operators are constructed so that the
differencing is performed upwind or in the direction opposite to that in which the
components of information are traveling. This approach has the advantage of be-
ing more robust and requiring less user interaction than does the central difference
technique. There are generally two classes of upwind methods: flux-vector splitting
(FVS) and flux-difference splitting (FDS). The more popular FVS schemes are those
of Steger and Warming [69] and Van Leer [70]. The most popular FDS technique

is Roe’s scheme [71].
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The basic idea behind FVS techniques is to split the inviscid flux vector in
one space dimension into two parts, according to the sign of the eigenvalues, each
of which contain the information that propagates downstream and upstream, re-
spectively. The two parts are then differenced separately in a stable manner using
a one-sided extrapolation formula consistent with the direction of propagation. In
general, downstream propagating information is extrapolated from the upstream
direction, and conversely for the upstream propagating information.

The FDS technique does not split the flux vector but reconstructs the fluxes
by determining an approximate solution to a Reimann problem [71]. For that,
discontinuous states are assumed to exist on either side of a cell interface. An
approximate solution for this condition is written in terms of waves propagating
upstream and downstream relative to the cell interface, each of which is associated
with a distinct eigenvalue. For the Euler equations, the solution consists of three
waves centered at the cell interface, i.e. a shock wave, a contact discontinuity, and
an expansion wave. In general, FDS is considered more accurate and provides a
sharper resolution of shocks and contact discontinuities than does FVS. A good
review of the various flux formulas is presented in Ref. [72]. The FDS approach will

be employed in the present method.
3.2 Flux Difference Splitting

The philosophy behind Roe’s approach to FDS is to compute approximate solu-
tions to the underlying set of Riemann problems which still describe the important
nonlinear behavior of the interacting waves. This contrasts with Godunov’s ap-
proach [73] which is to obtain a more expensive exact nonlinear solution to what
is already an approximation of the data. Roe’s scheme exploits the fact that the
Riemann solution for any set of linear conservation laws is easily computed. Its
derivation is based only on a one-dimensional interaction of characteristic waves,
but can be applied in multidimensions if the assumption is made that conserved
quantities in grid cells are exchanged by waves traveling normal to the cell inter-

faces, i.e. locally one-dimensional. Hence, velocities parallel to the cell interface

UPWIND DISCRETIZATION 12



are ignored and differences in the parallel components are assumed to occur across
the contact surface. Research is also underway on a truly multidimensional FDS
approach [74 to 76], but this has not been applied in the present work. A good
derivation of Roe’s one-dimensional scheme is presented in Ref. [53] along with the
extension to three dimensions. Key elements of the derivation will be presented in
the following.

The flux across each cell face « is computed using the numerical flux formula

Fy = 14[F(Qz) + F(Qr)- | A| (Qr — QL) (3-1)

Here Q1 and Qg are the conserved variables to the left and right of the interface
k. Eq. (8.1) essentially expresses the central difference of the fluxes plus an upwind
correction. For a central-difference algorithm, the upwind correction term would be
replaced by the artificial dissipation terms.

Since the Euler equations are nonlinear, and Roe’s scheme is based on lin-

ear concepts, the equations are linearized by evaluating the Jacobian matrix A =

O0F/0Q with the averaged quantities:

P =+/PLPR

i = (ur +urvpr/p)/(1 + v/pr/p1)
% = (vz +vrV/pr/pL)/(L + V/PR/PL)
@ = (wz +wrv/pr/p1)/(1 + V/pr/pL) (3.2)
ho = (hoy + honV/pr/p1)/(1 + V/PR/PL)
@ = (v = 1)(ho — (& + #* + ©7)/2)

Here, the Roe-averaged matrix A (note tilde) is a mean value of A with the prop-

erties
(i) A(Qr,Qr) ~ A(Q)as QL - Qr — Q;
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(i) A(QL,Qr)[Qr — Q1] = F(Qr) — F(QL) ;

(iii) A has a complete set of real eigenvalues and eigenvectors.

Property (i) ensures consistency of the governing differential equation so that the
approximate solution tends to the exact solution for small differences in data across
the interface. Property (ii) ensures that A satisfies the Rankine-Hugoniot shock
jump condition and is responsible for the sharp resolution of steady shock waves.
Property (iii) ensures that the matrix A has three independent eigenvalues which

allows the matrix to be written in the canonical form:
|A|l=T|A| T (3.3)

where T and T-! are the right and left eigenvectors, respectively, and A is the
diagonal matrix of eigenvalues.

The Roe-averaged variables in Eq. (3.2) were derived in Ref. [77] to satisfy
the three properties simultaneously. Properties (i) and (iii) could be satisfied by
virtually any simple algebraic average of the left and right states, but property
(ii) can not. The special square-root averaging evident in Eq. (3.2) is necessary to
satisfy the second property, i.e. the Rankine-Hugoniot shock jump condition..

Using Eq. (3.3) to rewrite the last term in Eq. (3.1) as:
|AI(Qr-Qu)=T|A|T7AQ (34)

it can be reduced to three AF flux components, each of which is associated with a

distinct eigenvalue:

TIA|T'AQ =| AF, | + | AFy | + | AFs | (3.5)
with
1 0
i i i Au — n AU
| AF, |=| T | (Ap - é@) 5 +5 Av — 7y AU
. Aw— 74, AU
1‘-—-’*—‘-’-’-2—?1'-2’- Ay + 1Av + 0Aw — UAU
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" i+ Az
. = ., (Ap£paAUy | ¥ T Nad
| AFys |=|U £d | (p2+) D+ Ry d
“ B + 7,8

ho £ Ua

where U = @i, + Ny + wn, and AU = nzAu + nyAv + nAw.
For a first-order scheme, the state of the primitive variables at each cell face is

set to the cell-centered averages on either side of the face.

3.3 Higher-Order Spatial Differencing

9.9.1 Multidimensional Reconstruction

The challenge posed in constructing an effective higher-order scheme is to de-
termine an accurate estimate of the left and right states at the cell faces for the flux
calculation. One approach [40, 41] would be to extend the MUSCL-differencing
technique, which is widely used in structured algorithms, to unstructured grids.
Since this procedure involves colinear interpolations across arbitrary tetrahedral
cells, accurate results can be difficult to attain. An alternate approach proposed
by Barth and Jespersen [38] is to perform a multidimensional linear reconstruc-
tion of cell-averaged data. In the reconstruction approach, higher-order accuracy
is achieved by expanding the cell-centered solution to each cell face with a Taylor

series:

q(xa Y, z) = Q(xc, Ye, zc) + ch -Ar + 0(A7‘2) (36)

where
T
q = [p,u,v,w,p]

This formulation requires that the solution gradient Vq be determined at the cell
centroids. The evaluation of this term is generally quite expensive and can consume
a large fraction of the total computational time. Barth and Jespersen proposed three
approaches [38] in two-dimensions for computing the gradient. However, the most

accurate of the approaches is not easily extendible to three dimensions, and the least
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accurate ones utilize only a portion of the surrounding information. What is desired
is an inexpensive approach which produces a truly multidimensional reconstruction,
yet is relatively simple to apply in three dimensions.

A new scheme containing these properties was proposed in Ref. [43] for estimat-
ing the solution gradient. The general approach was to: 1) coalesce surrounding
cell information to the vertices or nodes of the candidate cell, then 2) apply the
mid-point trapezoidal rule to evaluate the surface integral of the gradient theorem

Vqe = 1 qidA (3.7)
VQ& o )

over the four faces of each tetrahedral cell. Here, Vq, denotes the volume enclosed by
the surface ;. Results presented in Ref. [43] demonstrated that this scheme could
achieve accuracies comparable to those obtained with structured upwind codes, with
approximately twice the CPU time/cell. »

Additional analysis of that scheme has resulted in a simplification which further
reduces the run time by one-half by eliminating the need to explicitly evaluate the
integral in Eq. (3.7). This new scheme is analytically equivalent to that in Ref. [43],
and is formally derived in Appendix A2 for two dimensions. The simplification
stems from some useful geometrical invariant features of triangles and tetrahedra.
These features are illustrated for an arbitrary tetrahedral cell in sketch (b).

4

e Cell centroid

% Face centroid

3

Sketch (b)
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Note that a line extending from a cell-vertex through the cell-centroid will always in-
tersect the centroid of the opposing face, which is precisely where the area-averaged
flux is evaluated in Eq. (3.1). Furthermore, the distance from the cell-vertex to the
cell-centroid is always three-fourths of that from the vertex to the opposing face.
By using these invariants along with the fact that Ar is the distance between the

cell centroid and the face centroid, the second term in Eq.(3.6) can be evaluated as:

Vqc: Ar = a—qAr
or

3.8
~ 1/3(qn1 + qn, + qns) — Qn, Ar ( )

4Ar

Substituting Eq. (3.8) into Eq. (3.6) results in a simple, universal expression for a

Taylor series expansion within a tetrahedral cell:

df1,2,s = dc + 1/4 [1/3(qn1 + Qn, + qns) - qn4] (3'9)

where as illustrated in sketch (b), the subscripts ni,n3,n3 denote the nodes com-
prising face fi,2,3 of cell ¢ and n4 corresponds to the opposite node. As shown in
appendix A2, Eq. (3.9) is formally second-order accurate. The only question of
accuracy in the overall scheme lies in the nodal averaging procedure. Some analysis
of this procedure is given in the next section, but no formal estimate of accuracy

has yet been determined.
3.9.2 Nodal-Averaging Procedure

As observed in Eq. (3.9), the state at the cell faces, qf, are a function of the
cell-averaged state, q., and that of the four nodes, q,. The cell—averaged‘states
are assumed known from the solution. Estimates of the state at the nodes can be
determined from the surrounding cell-averaged values using a weighted averaging
process which incorporates available geometric information. A multidimensional
weighted averaging of surrounding cell-centered data to a node can be achieved by

an expression of the form

N N
qn = (Zwiqc,i) / (ZWz‘) (3.10)
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The subscripts n and ¢, refer to the node and surrounding cell-centered values,
respectively. Numerical experiments were performed using known test functions
to determine a satisfactory definition of the weighting factor w;. An arbitrary
tetrahedral test grid was constructed within a unit cube as shown in Fig. 1. Both
linear and nonlinear test functions were used to define a known state and its gradient

at the cell centroids. The linear function used is

f(xaya z)linear =z4+y+z (3110)

where the gradients are
fo=fy=Ff=10 (3.11d)

The nonlinear function used is

f(Z, Y, 2)nontinear = z° + sin(my) + €2* (3.12q)

where the gradients are
fz =2z, f,=mcos(my), f.=2€* (3.12b)

Several weighting factors of the form

w; = V;, ri, -L, and —15 (3.13)

T; Ti

where V; is cell volume and

L
2

ri = (i = T0)? + (Ye,i — Yn)? + (2¢,i — 2n)?] (3.14)

were explored to determine which would produce the least total error in computing

the gradient. The error was computed as a summation of the individual cell errors

1
Error = 3Ncella Z I fézact - féomputed |1:,y,z (315)

The results of that exercise are presented in Table 1.
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Table 1. Errors in computing gradient for test-functions.

Linear Nonlinear
W; Function | Function

Vi | 01059 | 0.4820
ri | 00419 | 0.3018
1/r; | 0.0344 | 0.2621
1/r2 | 0.0480 | 0.2842

As can be observed, the form w; = 1/r; produces the lowest total error for each

of the three components. The resulting nodal averaging formula is

Ny e
an = (Z‘f‘")/ (Z;—) (3.16)

i=1 ° =1 *

In constructing this formula, it is assumed that the known values of the solution
are concentrated at the cell centroids, and that the contribution to a node from the
surrounding cells is inversely proportional to the distance from each centroid to the
node. Note that this new reconstruction process incorporates information from all
of the cells surrounding the candidate cell, thus producing a truly multidimensional
higher-order expansion in Eq. (3.9). Furthermore, the method is extremely easy
to apply in either two-dimensions or three-dimensions. The primary information
which must be supplied are which cells surround each node. For boundary nodes,
the surrounding face-centered boundary conditions and respective distances are used
in Eq. (3.16).

Equation (3.16) is essentially a multidimensional linear interpolation formula.

For example, consider in sketch (c) the one-dimensional interpolation between states

A and B to point C:
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e - o > o -

Az

Sketch (c)
Apply Eq. (3.16) as

0= (5s + 25)/ (55 * 22)

(3.17)
= 1/3g4 + ?/3¢B

In the next example, Eq. (3.16) can be characterized as an average of two linear

interpolations. Consider the application of Eq. (3.16) to the following:

A
®

De L < e B

Sketch (d)
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gA gc |, 4B 4D 1 1 1 1
2Ay + Ay + Az + 2Az)/(2Ay + Ay + Az + 2Aa:)

<

B0 (R 2)+ (24 22) 019
2
3

[(Zﬁ_%—y)(l/m +4c) + (ﬁy-)(qa + 1/2<1D)]

For Az = Ay,
g = 1/2[(Yaq4 + 23qc) + (%4 + /3qp)) (3.19)
A li;;r linear
interpolation interpolation
across A-C across B-D

3.4 Analysis of Reconstruction Scheme

Further insight into the character of the present reconstruction scheme can be
gained through additional analysis. The scheme will be applied in the following to a
one-dimensional stencil, a two-dimensional Cartesian grid, and a uniform triangular

grid.
3.4.1 Uniform One-Dimensional Stencil

Consider a 1-D stencil with even spacing as shown in sketch (e):

j—1- J+ 12

e | ek o | .
j—1 J J+1
Sketch (e)

Expand the solution in a Taylor series about z = z; to face j + 1/2

- | dq

( (Az

57 +o(as?) (3.20)

Computé dq/dz using the nodal averages from Eq. (3.16) at j + 12 and j — /2 in
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one dimension:

dg _ %+lp ~9-1p

dz Az
_ L g j+1 1 1
T Az [(A:r/2 Am/2)/(Az/2 + Az/2> (3.21)
~(am+ 2w+ =)
Az/2  Az/2 Az/2  Az/2
— $i+1 — 951
2Az
Substituting Eq. (3.21) into Eq. (3.20) results in Fromms’ scheme [78]:
Gt T N ST 2
U1, =9 + Ya(gj+1 — gj-1) + O(Az?) (3.22)

= 1/a(gj+1 +4g; — gj-1) + O(Az?).
3.4.2 Two-Dimensional Cartesian Grid

Consider 2-D Cartesian grid shown below in sketch (f):

*Z/

D A
% »
I .
C 'B
J—1 J J+1
Sketch (f)

Expand the solution about cell-centroid point 7, k to cell face j + 1/2, k and evaluate

gradient «
=) g 4 920Az 2
qj+1/2,k - q],k + 3:1: ( 2 ) + O(A.’C )
/2(94 + gB) — Ya(gc + QD)] ( Az ) (3.23)
Az 2

=gk + s(ga + 9B — 9c — 9D)

z%¢+[
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Noting that all distances from the nodes to the cell centroids are equal, Eq. (3.16)
- yields
g4 = Y/a(gjk + @i k+1 + Gi+1,k41 + it1,k)

9B = Ya(qjx + ¢ k-1 + ¢i+1,k—1 + @i+1,k)
(3.24)

ac = 1/4(‘1j,k + gj,k-1 + ¢j-1,k-1 + q_j—l,k)

gD = /a(gjk + gjk+1 + Gi-1,k+1 + Gi-1,k)
Substituting Eq. (3.24) into Eq. (3.23) gives

qj-_)l/z,k = gjk+ V16l(@i+1, k41 + 2541,k + @i+1,k-1) = (Fi-1,k+1 +2¢5 -1,k +-1,k-1)]
(3.25)
As illustrated to the right in sketch (f), Eq. (3.25) produces a 7-point stencil for the

cell reconstruction.
3.4.8 Uniform Triangular Grid

The reconstruction formula for two-dimensional triangular grid has been de-
rived in Appendix A2 as Eq. (A2.13). Consider a uniform triangular grid consisting

of equilateral triangles:

Sketch (g)
Note that all distances from the cell centroid to the nodes are equal, thus Eq. (3.16)

éimply produces an arithmetic average of the states from the cells surrounding a
node. Applying Eq. (A2.13) to expand the solution from the centroid of cell 2 to
edge A-B:
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gaB = q2 + /3[12(ga + ¢B) — qc]
=gz + (Y6)(1/3)[ 2(q1 + 2¢2 + 2¢3 + g4 + g5 + g6 + 10 + 11 + Q12 + Q13)
—(g1+q2+ g7 +gs + g0 + q10)]

=q2+ 1/36[ 2(g3 — g7 —qs — qo) + (g4 + g5 + 96 — q1 + q11 + q12 + @13 — q10) ]
(3.26)

Sketch (h) provides a visual depiction of the reconstruction stencil corresponding

to Eq. (3.26).

Sketch (h)

As can be observed, information is used from all cells surrounding the candidate

cell, but is biased across edge A-B.
3.5 Discussion of Limiting

Upwind schemes generally require the use of limiter functions to obtain smooth
higher-order solutions around flow discontinuities, which has been the experience
with the schemes of Refs. [38-42]. While the present method has yet to be applied in
two-dimensions, experience with its application in three-dimensions has shown that
limiting is not required, and that the method correctly captures shocks without
oscillations. While this unexpected result is beneficial, it seems unlikely that a
high-order scheme could capture discontinuities smoothly without some form of

artificial dissipation being added. It is quite possible that the application of the
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averaging procedure across discontinuities could introduce additional dissipation
and a local reduction in accuracy as is characteristic of limiters. This result may
also be attributed in part to the use of the method in three dimensions and therefore
on relatively coarse meshes. Application of the method in two dimensions on a
sufficiently fine mesh may require some form of limiting to eliminate oscillations.
With respect to limiting overshoots in the expansion of Eq. (3.9), it can be reasoned
that when the averaging procedure of Eq. (3.16) is applied at a node, the resulting
qn represents a weighted mean value of the surrounding solution, i.e. qy is bounded
by the extrema of the surrounding solution. Furthermore, in three dimensions the
summation of Eq. (3.16) accesses an average of 20 to 22 cells for each node, which
results in a smoothing of errors introduced from the surrounding solution. Thus,
the expansion will have been smoothed and bounded by the procedure and should

not introduce new extrema into the solution.
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4. TIME INTEGRATION

4.1 Introduction

The governing equations can be advanced in time by one of two basic
methods: explicit or implicit time integration. An ezplicit scheme is one for which
only one unknown appears in the difference equation in a manner which permits
evaluation in terms of known quantities. It has the advantage of being economical
in memory, simple to program, and readily vectorizable. The primary disadvantage
is a restriction on the time step dictated by the need for explicit schemes to sat-
isfy the Courant, Friedrichs, and Lewy (CFL) convergence condition for hyperbolic
equations. An implicit scheme requires the simultaneous solution of a system of
equations involving all of the unknowns at the new time level. The system of equa-
tions can be derived by linearizing the nonlinear residual function R. The resulting
set of algebraic equations can be solved by either a direct method or an iterative
technique. In general, implicit schemes permit larger time steps since they are usu-
ally unconditionally stable, but require more memory and more computation time
per time step. The most popular explicit scheme is Runge-Kutta time stepping
developed by Jameson [67] which has been used quite successfully in a number of
unstructured flow solvers [28-31, 33-44]. Implicit schemes for unstructured methods
are still an active area of research [32, 39, 41, and 66] and are not widely used at
this time. The Runge-Kutta time stepping scheme will be employed in the present

work.
4.2 Runge-Kutta Time Stepping

The finite-volume discretization procedure in §2.3 leads to a set of semidiscrete
coupled ordinary differential equations which must be integrated in time to obtain

the steady state solution. Thus, writing Eq. (2.6) as:

0Q;
ot

Vi 4+R;=0, i=1,23,.. (4.1a)
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where
k(1)
Ri= ) FijAA; (4.1b)
i=1
R; is the residual accrued by summation of the fluxes through the four faces « of
a tetrahedral cell ;. These equations are integrated in time using a fully explicit

m-stage Runge-Kutta time-stepping scheme [67]:

Q® =qr

Q® = QW — o 2ER®

Vi

-1 0 At -2 (4.2)
Qe )=Q§)_am_1ViRgm )

ng) _ ng) —an %Rgm—n
f

Q?+1 — Qsm)

where the superscript n denotes the time level, and the parenthetical superscripts

the stage of the Runge-Kutta time stepping. The weighting factors a; to am are
defined as:

1
m—-—k+1’

a = k=1,..,m

These values of ay will give m-order accuracy in time for a linear equation. Prelimi-
nary calculations were made using both a 3-stage and 4-stage scheme which are only
second-order accurate for nonlinear equations [79]. The solution and convergence
characteristics were essentially identical. Thus, a 3-stage scheme was used for the
calculations presented in this paper.

In many cases, time accuracy in the integration is not required. For such cases,
the solution convergence to steady state is accelerated by local time stepping and

implicit residual smoothing.
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4.3 Convergence Acceleration

4.8.1 Local Time Stepping

Local time stepping accelerates convergence by advancing the solution at each
cell in time at a CFL number near the local stability limit. The expression for the

local time step was derived with the aid of a 2-D stability analysis presented in

Ref. [40]:
Vi

S ey

(4.3)
with

Bi = (| ui| +a:)4”

Ci= (| vi | +a))4{"

D; = (| wi | +a:) 4"
where CFL is the Courant-Friedrichs-Lewy number, V; is the cell volume, a; is the
local speed of sound, and Agz), Agy), and AEZ) are the projected areas of cell 4 in the
z,y, and z directions. A method for computing projected area terms in Eq. (4.3) is
presented in Appendix Al. The local time steps were updated every 50 cycles for

the results presented in this paper.
4.3.2 Implicit Residual Smoothing

The maximum time step can be further increased by increasing the support
of the scheme through implicit averaging of the residuals [10] with their neighbors.
The residuals are filtered through a smoothing operator (which is essentially the

Laplacian operator for a uniform grid):
R; =R; +¢V’R;

where
K(i)
VR =) (R; - Ry)
j=1
which effectively builds in some implicitness into the explicit time integration scheme.

The summation uses residuals from the neighboring cells which share the faces &
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with cell 2. The resulting set of equations can easily be solved iteratively by using

Jacobi iteration

£(2) k(%)
R =Ri+ed K"/ (14> 1) (4.4)
j=1 j=1
Residual smoothing was performed during every stage of the Runge-Kutta time
cycle. With two Jacobi iterations and a value of 0.5 for €, the local time step can
be doubled. Section 7.1 presents the results of a parameter study for assessing the

sensitivities of € and the number of Jacobi iterations on convergence.
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5. BOUNDARY CONDITIONS

5.1 Flow Tangency

For the solid boundaries such as the wing and centerplane, the flow tangency
condition is imposed by setting the velocities on the boundary faces to their cell-
centered values and then subtracting the component normal to the solid surface.
Density and pressure boundary conditions are simply set to the cell-centered value.
A condition of zero mass and energy flux through the surface is ensured by setting
the left and right states of solid boundary faces equal to the boundary conditions
prior to computing the fluxes with Roe’s approximate Riemann solver. This tech-
nique only permits a flux of the pressure terms of the momentum equations through

a solid boundary.
5.2 Far-Field

Characteristic boundary conditions are applied to the far-field subsonic bound-
ary using the fixed and extrapolated Riemann invariants corresponding to the in-
coming and outgoing waves traveling in characteristic directions defined normal to
the boundary [10, 57]. The two locally one-dimensional Riemann invariants are

given by
2a

v—1
The incoming Riemann invariant R~ is determined from the freestream flow and

RE=U<+

(5.1)

the outgoing invariant Rt is extrapolated from the interior domain. The invariants
are used to determine the locally normal velocity component and speed of sound:

U=1,4(R*+R")
=1 (R - R") (52)

Since cell faces are defined with exterior unit normals, the sign of U is positive for
outflow and negative for inflow. At an outflow boundary where U > 0, the two
tangential velocity components are extrapolated from the interior with the result
Up = Ujnt + nz(ﬁ - Uint)
Vb = Vint + ny(U — Uint) (5.3a)
wy = Wint + Nz (U — Uint)
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Similarly for an inflow boundary where U < 0, extrapolating the two tangential
components of the freestream flow gives
Up = Uoo + Nz (U — Uso)
Vp = Voo + ny(ﬁ —Uw) (5.3b)
Wh = Weo +nz(Tf" Uoo)

The density boundary condition is computed from the entropy relation

oy = (;—S> N (5.4

where the entropy S = Sin: for an outflow boundary (U > 0) and S = S for an
inflow boundary (U < 0). The pressure condition is computed from the equation of

state
_ pya’
e

When solving for the boundary fluxes, the boundary conditions are stored in

Db (5.5)

an array and used in defining the right state in Eq. (3.1).
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6. PROGRAMMING STRATEGY

6.1 Introduction

Historically, unstructured flow solvers utilize significantly more computer re-
sources than do structured codes to solve a particular problem. Three-dimensional
structured Euler codes generally require memory in the range of 40 to 50 words/cell
and CPU times in the range of 25 to 35 us/cell/cycle on a CRAY-2S class super-
computer. The efficiencies of seven three-dimensional unstructured flow solvers were
assessed during a workshop entitled “Accuracy of Unstructured Grid Techniques”
held at NASA Langley Research Center on January 16-17, 1990. The comparisons
revealed memory requirements ranging from 73 to 306 words/(cell or node)T and
run times efficiencies from 64 to 222 us/(cell or node)/cycle. An earlier version of
the present code [43] was one of the seven codes and required 73 words/cell and
65 us/cell/cycle. It is apparent from the workshop results that careful attention
should be given to both memory management and vectorization issues if unstruc-
tured codes are to become competitive with structured codes. Thus, the program-
ming strategy itself becomes an issue in the effectiveness of unstructured flow solvers.

These issues will be addressed in detail in the following.
6.2 Memory Management

All coding for the present work is written in standard FORTRAN 77 program-
ming language. The memory is allocated within two single-dimensioned arrays for

real and integer variables. The allocation of memory within the single-dimensioned

t To avoid possible confusion, it should be noted that a 3-D structured mesh of
hexahedral elements contains the same number of nodes as cells (asymptotically),
whereas an unstructured mesh of tetrahedral elements generally contains between
5 and 6 times more cells than nodes. Thus, it is important to base efficiency
comparisons on the number of unknowns computed, i.e. the number of cells for a
cell-centered scheme and number of nodes for a node-centered scheme.
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arrays is controlled by pointers. A precise allocation of the memory is easily con-
trolled by a parameter statement in the main program which is set once the problem

size, i.e. number of cells, nodes, etc. is known after the grid has been generated:

PARAMETER (NCDIM = 108755, ! TOTAL NUMBER OF CELLS
NNDIM = 20412, ! TOTAL NUMBER OF NODES
NBNDIM= 4931, ! NUMBER OF BOUNDARY NODES
NFDIM = 222439, ! TOTAL NUMBER OF CELL FACES
NBFDIM= 9858) ! NUMBER OF BOUNDARY FACES

C WORK SPACE .

PARAMETER (MWORK = B5*NFDIM+5*NNDIM+10*NCDIM)

c
C REAL ARRAYS .
PARAMETER (NWDIM

4xNFDIM !\
+ G*NCDIM ! \
+ 1*NNDIM ! > Overhead (See Fig. 2a)
+ 9*NBFDIM ! /
+  MWORK) !/

C INTEGER ARRAYS .
PARAMETER (IMWORK=  T7*NFDIM
+ 1*NBFDIM
+ 13*%NCDIM
+ 2%NNDIM)
DIMENSION W(NWDIM), IW(IMWORK)
The real array “W” is divided into two parts, one for “overhead” parameters which
must be retained throughout the entire program execution, and the other for dy-
namic work space. The work space is dynamic with memory locations continually
being used and overwritten. Figure 2 illustrates the utilization of the array space.
In Fig. 2b, the diagram illustrates the relative positions of the intermediate vari-
ables in the work array as they are overwritten. Each column in Fig. 2b depicts
what nominally occupies the work space at different steps of the iteration process.

Note that the entire flux vector, FLUX, is stored prior to summation of the resid-

uals. As will be explained in the next section, the storage of this vector leads to a
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straight forward vectorization of the algorithm which results in improved computa-
tional speed. This step does not increase the overall memory requirement since the

same memory locations are used during the implicit residual smoothing procedure.
6.3 Vectorization

The general approach to vectorization is to construct the “do loops” so that
the primary index of any arrayed variable to the left of an equal sign is identical
to that of the loop index. This enables the FORTRAN compiler on Cray Research,
Inc. supercomputers to vectorize the loops automatically. With this approach, the
fluxes are computed and stored during a single pass over all of the cell faces as

shown in the following example:
C..Compute averaged "Q" at node points (See Section 3.3.3)

CALL QNODE(C... QN ...)

c
DO 1 I=1,NFBND ! ! Loop over boundary faces
NC1=IFACE(I,1) ! Cell No. 1 \
MBC=IFACE(I,2) ! Boundary Condition on face "I" '\
ND1=IFACE(I,3) ! Node No. 1 on face "I" \ See
ND2=IFACE(I,4) ! Node No. 2 on face "I" / Fig. 3
ND3=IFACE(I,5) ! Node No. 3 on face "I" /
ND4=NDFACE(I,1) ! Fourth node on cell NCi /

Q1 = FUNCTION("Q" AT NC1, AND "QN" AT ND1i,ND2,ND3,ND4)

IF(MBC FOR SOLID SURFACE) THEN ! \ Insure no mass
Q1 = QB(I) ! Set Q1 to Boundary Condition \ flux across
ENDIF ! / solid boundary

Q2 = QB(I) ! Set Q2 to Boundary Condition /
FLUX(I) = FUNCTION(Q1,Q2,METRICS) ! Roe’s FDS scheme
1 CONTINUE
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NFB1 = NFBND + 1

DO 2 I=NFB1,NFACE ! Loop over interior faces
NC1=IFACE(I,1) ! Cell No. 1 \
NC2=IFACE(I,2) ! Cell No. 2 \
ND1=IFACE(I,3) ! Node No. 1 on face "I" \  See
ND2=IFACE(I,4) ! Node No. 2 on face "I" > Fig. 3
ND3=IFACE(I,5) ! Node No. 3 on face "I" /

ND4=NDFACE(I,1) ! Fourth node on cell NC1 /
MD4=NDFACE(I,2) ! Fourth node on cell NC2 /
Q1
Q2

FLUX(I) = FUNCTION(Q1,Q2,METRICS) ! Roe’s FDS scheme

FUNCTION("Q" AT NCi, AND "QN" AT NDi,ND2,ND3,ND4)

FUNCTION("Q" AT NC2, AND "QN" AT ND1,ND2,ND3,MD4)

2 CONTINUE

This approach requires additional connectivity arrays IFACE and NDFACE. The
IFACE array, defined in the example, is generated and stored by a simple prepro-
cessor code which also assigns the boundary condition types to the appropriate
boundary faces. Note that the first NFBND array locations of IFACE correspond
to boundary faces. The boundary condition types are stored in locations IFACE(1-
NFBND, 2). The array NDFACE, also defined in the preceding example, is gener-
ated during initial program execution. Higher-order estimates of the left and right
states Q1 and Q2 shown in the example are obtained from Eq. (3.9). The fluxes

are computed from Eq. (3.1).

The residuals (Eq. 4.1b) are accrued in a similar manner by looping once over

the cells to sum the fluxes across the four tetrahedral cell faces. Again, this is
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illustrated by an example:
DO 3 NC=1,NCELL

MF1  =ICFACE(NC,1) ! \

MF2 =ICFACE(NC,2) t '\ Sign-coded face numbers
MF3 =ICFACE(NC,3) ! / for tetrahedral cell NC
MF4  =ICFACE(NC,4) v/

NF1  =IABS(MF1)

NF2 =IABS(MF2)

NF3  =IABS(MF3)

NF4 =IABS(MF4)

SIGN1 =FLOAT(MF1/NF1) ! \

SIGN2 =FLOAT(MF2/NF2) ! \ = +1. if NC=NC1 in IFACE
SIGN3 =FLOAT(MF3/NF3) ! / = -1. if NC=NC2 in IFACE
SIGN4 =FLOAT(MF4/NF4) ! /

RES(NC)=SIGN1*FLUX(NF1)
+SIGN2*FLUX (NF2)
+SIGN3*FLUX (NF3)
+SIGN4*FLUX (NF4)
3 CONTINUE
This procedure requires the additional array ICFACE to be generated during startup
which contains a list of the four faces of each tetrahedral cell. The signs on the four
face indices control whether flux is added or subtracted from the residual of a cell.
The sign convention that is established during the generation of the metric terms is
to add the flux if NC=NC1 in the IFACE array, and subtract if NC=NC2. As can
be observed, the algorithm maintains the conservative property of the finite volume
formulation.

The present code requires 64 words/cell in memory and runs at a speed of 34
us/cell/cycle on a single processor of a CRAY-2S with three stages of Runge-Kutta
time stepping and two Jacobi iterations for implicit residual smoothing. One disad-
vantage of the present algorithm is the need to store the additional array ICFACE
with a penalty of 4*NCELL in memory. An alternate data structure which requires
slightly less memory is used in the methods of Ref. [28, 37, and 40]. The referenced

algorithms do not store the fluxes, but perform the entire operation contained in the

preceding two examples within a single loop over the faces. While those algorithms
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retain the desired property that the fluxes need only be computed once for each
face, they do contain recursions in the residual summation which complicate vec-
torization. The recursions are reduced by reordering the faces, thereby enhancing

vectorization. This alternate approach was not investigated in the present work.
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7. COMPUTATIONAL RESULTS

A range of results are presented in this section to show the speed, accuracy
and robustness of the new flow solver. The speed and the accuracy is shown by
way of grid sensitivity and parameter studies while its robustness is established by
flow solutions on several complex three-dimensional configurations. All the meshes

for this study were generated using an improved version of the advancing front grid

generation program, VGRID3D [51].
7.1 ONERA M6 Wing

The ONERA M6 wing has been used widely as a benchmark case to evaluate
performance of newly developed flow solution methods. The wing has a leading edge
sweep of 30 degrees, an aspect ratio of 3.8, a taper ratio of 0.56, and symmetrical
airfoil sections. The wing has a root chord of 0.67 and a semispan b of 1.0 with

a rounded tip. The computational domain is bounded by a rectangular box with

boundaries at —6.5 <z <11.0,0.0 <y < 2.5, and —6.5 < z < 6.5.

7.1.1 Grid Sensitivity

Transonic solutions were computed on three grids (Figs. 4 and 5) at the same
conditions: My, = 0.84, and a = 3.06°, to make an assessment of the grid sen-
sitivity. One of the meshes (Mesh 1) has cells stretched in the spanwise direction
where gradients are small while the other two meshes have no stretching. Mesh size

specifications are listed in Table 2.

Table 2. Mesh size specifications.

Mesh 1 | Mesh 2 | Mesh 3

Total Cells 35008 | 108755 | 231507
Boundary Faces | 4046 9858 16984
Total Nodes 6910 20412 | 42410
Boundary Nodes | 2025 4931 8494
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The computations were performed using the 3-stage Runge-Kutta time stepping
scheme with local time stepping, implicit residual smoothing, and a CFL number
of 4.0. Two cycles of the implicit residual smoothing were performed during each
Runge-Kutta stage with ¢ = 0.5. The solutions were started from freestream initial
conditions with the first-order scheme and run until the Ly-norm (RMS average
of all residuals) decreased one order of magnitude, at which time the solver auto-
matically switched to the higher-order scheme. The solution history is plotted in
Fig. 6 against both CRAY-2S CPU time and number of cycles to provide a relative
comparison of computational effort. Figure 6(a,b) shows the Ly-norm with a de-
crease of approximately 2.5 orders of magnitude. The convergence history of the lift
coefficient is shown in Fig. 6(c,d). Additional details of the solution characteristics

are provided in Table 3.

Table 3. Solution characteristics.

Dimensioned | CRAY-2S | Number

Memory, mw | Time, min. Cycles
Mesh 1 2.3 12 660
Mesh 2 7.0 89 1565
Mesh 3 14.9 203 1716

A comparison of wing surface pressure contours for the three meshes is pre-
sented in Fig. 7 with contour intervals of A(p/pe) = 0.02. Before plotting, the
computed face-centered boundary quantities were averaged to the boundary nodes
using Eq. (3.16). The contour results show very little overall sensitivity to mesh
size. As expected, the primary effect of the grid occurs with the spatial resolution
of the shocks.

Pressure contours at the plane of symmetry are presented in Fig. 8 and again
shows little sensitivity to mesh size. The primary differences occur with the resolu-
tion of the aft shock in the midchord region where the larger cells (see Fig. 5) limit

spatial resolution.
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Figure 9 shows the effect of mesh size on the streamwise surface C} distribution
at six span stations. Both the present unstructured results and inviscid solutions
from the structured upwind code, CFL3D [80], are plotted in comparison to experi-
mental data at a Reynolds number of 11.7 million [81], corresponding to conditions
for which viscous effects are relatively small. The computations on the three tetra-
hedral meshes agree well with experiment and demonstrate comparable accuracy
with the structured-grid calculations. The primary effect of mesh size is confined
to regions of large gradients such as the leading-edge suction peak and the shock,
where the finer mesh yields sharper shock definition. Although the deterioration of
the solution for Mesh 1 is greater at the root and tip stations, it should be noted
that its solution was obtained with an order of magnitude less CPU time and over
6 times less memory than that for Mesh 3.

The force and moment coefficients listed in Table 4 were computed by inte-
grating the face-centered boundary pressures. The coefficients for lift, drag, pitch-
ing moment, and wing root bending moment are based on reference quantities of
Aref = .5255, ¢ = .67, and by = 1.0. The pitching moment is referenced about

the wing apex.

Table 4. Force and moment characteristics.

Mesh 1 Mesh 2 Mesh 3
CrL 2816 .2904 2911
Cp .0141 .0132 .0123
Cm -.1688 -.1724 -.1726
CrBM 1270 .1283 .1285

The chordwise entropy distributions presented in Fig. 10 are defined by the
relation:

Entropy Parameter = %g - (7.1)

For these supercritical inviscid solutions, the flow should be isentropic ahead of the

shocks with zero entropy production. Entropy should only be produced through the
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shock waves and convected downstream thereafter. Any generation of entropy apart
from shocks or even an unphysical reduction of entropy can be only interpreted as
numerical error. Figure 10 shows the presence of erroneous entropy peaks at the
leading edge above a level of 0.03 for Meshes 1 and 2. Refinement of the mesh
(Mesh 3) results in a substantial reduction in these entropy peaks. The finer Mesh
3 also produces a further decrease of the entropy convected downstream of the
‘erroneous peaks. Further reductions in the peaks may be possible by additional
mesh refinement or by applying alternate boundary conditions which maintain a
zero gradient of entropy normal to the solid surface [82]. The entropy rise through

the shocks generally overshoots but settles to a constant value.
7.1.2 Implicit Residual Smoothing

A study is performed to investigate the effect of the IRS parameters in Eq. (4.4)
on solution convergence. Convergence assessments are made for the Ly-norm and lift
coefficient in terms of both CPU time and number of iterations. A further study to
determine the impact of implicit residual smoothing on the maximum CFL number
is also performed.

Figure 11 shows the effect of the number of Jacobi iterations, JITER, applied
to Eq. (4.4) for Mesh 2. The Jacobi iterations were varied from 2 to 4 using fixed
values for e=0.5 and CFL=4. The solution for this case diverged with JITER=1.
Shown for reference is the case with no IRS (JITER=0). There, the upper limit for
stable convergence is reached with CFL~ 2. It is evident in Figs. 11(b) and 11(d)
that implicit residual smoothing significantly reduces the total number of cycles
required for convergence. However, the procedure does impose additional overhead
which is reflected in the results shown in Figs. 11(a) and 11(c). These latter two
figures demonstrate that IRS is beneficial in substantially reducing the total CPU
time required for convergence with two Jacobi iterations. No significant advantage

is gained by using more than two Jacobi iterations for the fixed values of ¢ and

CFL.

COMPUTATIONAL RESULTS 41



The effect of varying the coefficient ¢ with JITER=2 and CFL=4 is shown in
Fig. 12. A decrease in € results in more rapid convergence of the Lz-norm, but has
little effect on the lift coefficient. Convergence could not be achieved with €=0.1 or
0.9.

The benefit derived from using IRS to increase the numerical stability limit is
illustrated in Fig. 13. With JITER=3, the CFL number can be increased up to a
value of 6 for this wing. (With two Jacobi cycles, the CFL number could not be
increased beyond a value of 4.) Once again, the case with no IRS (JITER=0) is
shown for reference. Figure 13 shows a dramatic improvement in convergence rate
with the higher CFL numbers. While these results are quite encouraging, experience
gained by computing several complex configurations has shown that the best overall
values for the IRS parameters are JITER=2, £€=0.5, and CFL=4. In some cases, it

may be necessary to lower the CFL number further.
7.2 Boeing 747-200

Computations were performed on the Boeing 747-200 configuration to demon-
strate the robustness of the flow solver for computing the flow around realistic
transport configurations. As shown in Fig. 14, this configuration has two double-
ringed flow-through nacelles and an empennage. The computational semispan grid
has 216,860 cells and 39,868 total nodes. The surface grid contains 14,268 bound-
ary faces and 7,128 boundary nodes, including the outer boundary and plane of
symmetry. A solution was computed for M, = 0.84 and a = 2.73° using CFL=4
and the convergence acceleration techniques. A wing reference area of 5,500 ft2 was
used for computing the lift coefficient.

Figure 15 portrays a good resolution of the surface pressure contours over the
entire configuration. Note the presence of a double lambda shock on the wing,.

The solution history is presented in figure 16. The solution was started with the
first order scheme until the residual dropped one order of magnitude, then continued

with the higher-order scheme for a total of 2000 cycles. The Ly-norm decreases 2.7
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orders of magnitude in approximately 190 minutes of CRAY-2S CPU time. The
lift coefficient has converged well before that time. The solution was started from

freestream initial conditions and required 13.9 megawords of memory.
7.3 Low-Wing Transport

Another quantitative assessment of the flow solver is made using a low-wing
transport (LWT) configuration described in Ref. [83]. The 1/17th-scale configura-
tion contains a supercritical airfoil and a flow-through representation of an advanced
turbofan nacelle with a bypass ratio of approximately 6. The experimental pressure
measurements were obtained in the NASA Langley 16-Foot Transonic tunnel [84]
at transonic Mach numbers with Reynolds numbers in the range of 2.5 x 10® based
on the mean aerodynamic chord of the wing. The present calculations were made
for the condition of M = 0.768 and o = 1.116°.

The computational grid consists of 418,939 cells and 75,470 total nodes rep-
resenting the semispan configuration. The surface grid (Fig. 17) contains 21,428
boundary faces and 10,716 boundary nodes on the semispan, including the outer
boundaries and plane of symmetry. A sufficient definition of the internal flow-
through nacelle geometry was not available, so the grid was terminated at a plane
inside the inlet, and at the two bypass exit planes. Freestream conditions were pre-
scribed on the exit plane boundaries. A condition of M = 0.632M,, was imposed
on the inlet plane to balance the mass flux.

Surface pressure contours are presented in Fig. 18. Good resolution of the
wing shock can be observed along with evidence of an inboard lambda shock.

A comparison of the streamwise C, distributions are shown in Fig. 19 for six
span stations. The inviscid results are compared with experimental data at one de-
gree higher angle of attack. In general, the agreement is good and consistent with
the expected effects of viscosity. The shock is more aft, and the effects of flow sepa-
ration downstream of the shock and in the lower-surface cusp region result in a lower

experimental AC) over the aft region. (It should be noted that the stations within
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0.463 < 7 < .70 had only three cells defining the region between the shock and the
trailing edge, and thus do not adequately resolve the flow aft of the shock.) Similar
comparisons are presented in Ref. [85] for a typical transport configuration with a
supercritical wing. Comparisons shown between viscous and inviscid calculations
and transonic experimental data show viscous effects comparable in magnitude to
those observed in the present calculations.

The solution was obtained using mesh sequencing [44] and required approxi-
mately 6 hours of CRAY-2S CPU time and 27 megawords of memory. The present
grid has a considerable number of cells clustered in directions of small gradients
where they are not needed. The total number of cells could be greatly reduced with
grid stretching, which would significantly decrease the amount of memory and CPU
time required to obtain a satisfactory solution. Generation of stretched grids for

complex configurations is presently an active area of research.
7.4 High-Speed Civil Transport

A generic High-Speed Civil Transport (HSCT) configuration was chosen be-
cause it represents a different class of geometry and flow field. This configuration is
characterized by its slender planform which can generate leading-edge vortex flow
under certain flow conditions. While the wind tunnel model [86] has a small radius
along the leading edge, recent tests conducted by Pamela Belton in the NASA Lan-
gley 8-Foot Transonic Pressure Tunnel [87] revealed the presence of leading-edge
vortex flow at relatively low angles of attack for transonic Mach numbers. Thus,
a computational grid was constructed which was sufficiently coarse to provide a
numerically sharp leading-edge, thereby inducing flow separation. The resulting
surface grid, depicted in Fig. 20, contains 10,016 longitudinally stretched boundary
faces and 5010 boundary nodes on the semispan, as well as the plane of symme-
try and outer boundary. The semispan volume grid contains 184,997 cells and
33,499 total nodes. A computation was made for the conditions M = 0.901 and
a =6.47°.

COMPUTATIONAL RESULTS 44



Figure 21 portrays the surface “oilflow” lines as computed from the solution.
The outward sweeping of these surface streamlines indicates the the presence of
leading-edge vortex flow on both the inboard and outboard panels.

The solution history is presented in Fig. 22. The solution was started with
the first order scheme until the residual dropped one order of magnitude, then
continued with the higher-order scheme for a total of 1000 cycles. With CFL=4
and convergence acceleration, the residual decreases 2.5 orders of magnitude in
58 minutes on a CRAY-YMP, which is approximately 37-percent faster than the
CRAY-2S. This calculation required 11.8 megawords of memory.

7.5 Space Transportation System

A computation was made on the Space Transportation System (STS) ascent
configuration at Mo = 1.05, and o = —3.1° to demonstrate the robustness of
the flow solver in obtaining a solution on a complex geometry with a complex flow
field. The semispan grid, which includes the orbiter, external tank, and solid rocket
boosters, consists of 108,538 cells and 21,562 total nodes. The surface grid shown
in Fig. 23 is represented by 13,552 triangular faces and 6,780 nodes, including the
outer computational boundaries and plane of symmetry. The computations were
made with zero elevon deflection.

Figure 23 shows a composite picture of the surface triangulation and the corre-
sponding pressure contours on the full configuration. The centerplane grid is shown
in Fig. 24 along with the pressure contours in Fig. 25. The basic features of the
flow (shocks, expansions etc.) have been well captured in the solution considering
that only 3-4 layers of fine cells have been used close to the body.

As shown in Fig. 26, the solution was obtained with 1900 first-order cycles
using a CFL number of 0.5, then 2400 additional cycles at higher-order with a
CFL number of 1.0 for a total residual reduction of 3.2 orders of magnitude. The
solution required 142 minutes of CPU time on a CRAY-YMP and used 7 megawords
of memory.

The quality of the present results, which were computed on a relatively coarse
grid with a relatively small amount of computer time, serves as a good demonstra-

tion of the overall flow solver capabilities.
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8. SUMMARY AND CONCLUSIONS

The objective for the present work was to develop a fast and accurate upwind
scheme for solving the three-dimensional Euler equations on unstructured tetrahe-
dral meshes. The general approach was to utilize proven technologies when possible
to reduce risk. Thus, a cell-centered finite-volume formulation was implemented for
tetrahedral cells using Roe’s flux-difference splitting to compute interface fluxes.
Solutions were advanced in time using a 3-stage Jameson-style Runge-Kutta time
stepping scheme with convergence accelerated to steady state by local time step-
ping and implicit residual smoothing. An important new development was pre-
sented for efficiently constructing higher-order differences within tetrahedral cells.
The differences are formed by a novel cell-reconstruction process that is based on
an analytical evaluation of solution gradients within tetrahedral cells rather than
the cumbersome numerical procedures typically employed by prior methodologies.
As a result, the total run time was reduced by one-half. Careful attention was
also given to vectorization and memory management. The resulting code runs at
a speed of 34 microseconds per cell per cycle on a CRAY-2S supercomputer and
requires 64 words of memory per cell, which is significantly lower than most con-
temporary unstructured flow solvers. To put this accomplishment in perspective,
three-dimensional structured Euler codes generally operate at speeds in the range of
25 to 35 microseconds per cell per cycle on the same computer and require memory
in the range of 40 to 50 words per cell. To further emphasize the significance of this
result, comparisons were shown between the present method and structured-grid
upwind results to demonstrate that comparable accuracies are attainable with com-
parable numbers of computational cells. Thus, the new method offers a competitive
alternative to structured-grid Euler codes in terms of accuracy and efficiency, but
has the additional benefit of capitalizing on the increased geometrical flexibility
available through tetrahedral cells and on generalized indexing schemes.

Results have been presented for a range of configurations at transonic Mach

numbers to demonstrate the speed, accuracy, and robustness of the flow solver. The
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computational efficiency and accuracy has been illustrated by obtaining solutions
on the ONERA M6 wing in 12 minutes of CRAY-2S run time with 2.3 megawords of
memory, and by comparing to experimental data and structured-grid results from
a prominent upwind code, CFL3D. A solution was generated for a Boeing 747-200
configuration with empennage and dual-ringed flow-through nacelles to qualitatively
assess the utility of the method for computing the complex flow-field around a
realistic aircraft configuration. A quantitative assessment has been presented for
a low-wing transport configuration to demonstrate the accuracy and robustness of
the flow solver on a complex geometry. The ability of the method to compute
leading-edge vortex flow on a realistic slender configuration was demonstrated for a
generic high-speed civil transport. A computation has been made on the full Space
Transportation System at a transonic Mach number to demonstrate the robustness
of the flow solver in obtaining a solution on a very complex geometry with a complex
flow field.

The present effort concludes with a new scheme for efficiently solving the
three-dimensional Euler equations around very complex geometries using tetrahe-
dral meshes. The coding was constructed to serve as a modular base platform on
which to build additional capabilities. It is recognized that the unstructured grid
methodology will not be fully utilized until viscous effects can be included for full-
scale aircraft simulations. Thus, current plans include the addition of viscous shear
terms, turbulence model, and multigrid convergence acceleration. Additional work
is also needed in the area of viscous grid generation. An effort is also planned to
install an existing iterative design algorithm into the code which will permit the
design of aircraft components to match prescribed target pressure distributions.
The flow solver is compatible with an existing advancing-front grid generator and
a graphics post-processing code, and is actively being used for conducting applied

aerodynamic research.
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Figure 1.- Tetrahedral grid in unit cube for testing gradient computation.
2020 nodes, 9906 cells.
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Overhead ,
Length:  4*NFACE+6*NCELL+1*NNODE+9*NFBND

Variables: VC, DTV, RINODE, QB, XFC, YFC, ZFC,
RIBFAC, DBNI, CX, CY, CZ, SD

e

Workspace
Length: 5*NFACE+5*NNODE+10*NCELL

(a) Entire array “W”.
Figure 2.- Schematic of memory utilization for real variables.
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(b) Workspace.

Figure 2.- Concluded.
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Figure 3.- Two cells sharing common face.
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(a) Mesh 1.
Figure 4.- Upper surface mesh for ONERA M6 wing.
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(b) Mesh 2.

Figure 4.- Continued.
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FIGURES

(c) Mesh 3.

Figure 4.- Concluded.
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(a) Mesh 1 (Farfield).

(b) Mesh 1 (Nearfield).
Figure 5.- Mesh at symmetry plane for ONERA M6 wing.
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(d) Mesh 2 (Nearfield).
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Figure 5.- Continued.
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(e) Mesh 3 (Farfield).
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(f) Mesh 3 (Nearfield).
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Figure 5.- Concluded.
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Figure 6.- Effect of mesh size on convergence history
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